Virtual Reality Wave Survival Game

Isaac Schwab

December 2017

Abstract

The goal of this project was to build a virtual reality wave survival
game. The game is an immersive experience that showcases the current
generation of virtual reality systems like the HTC Vive. The gameplay
involves a player defending against waves of attacking enemy monsters.
The player can interact with beam rifles and lightsabers to attack the
oncoming enemies. A realistic environment was created to help immerse
the player in the experience. Room scale is built into the game, thus
allowing the player to use slight locomotion to avoid enemy attacks. The
incorporation of fast paced waves and player movement, not only create a
mentally stimulating game, but lead to a substantially physical experience
for the users. The combination of mental and physical interaction in this
game creates an immersive, enjoyable experience. This type of game truly
showcases the power of the HTC Vive and the current state of virtual
reality.

1 Introduction

Virtual reality (VR) games are a great showcase of what can be created
with current generation VR systems. There are many different categories
of VR games. They employ different techniques and gameplay styles that
immerse the players. Realistic environments, exploration, interactive sto-
rylines, task driven events, intense scenarios, and object interactions are
just a few of the techniques found in VR games. In the related work sec-
tion I cover some games that use these gameplay styles to create awesome
experiences.

My game focuses heavily on the idea of having immersive object in-
teractions. These interactions occur between the player and the weapon
objects, and the weapons and the enemies. I also worked to create a re-
alistic environment that helps immerse the player and add to the already
intense scenario of having demon monsters running at them. I discuss
how I implement and achieve these tasks in my accomplishment section.

2 Related Work

This project focuses on two popular areas of virtual reality, gaming and
motion tracked controller interactions. At its core, this project is a wave



survival video game. The genre of wave survival games are pretty common
in the entertainment industry. While there are a variety of wave survival
games, I will highlight a few that I have used for inspiration.

The Brookhaven Experiment is a horror survival shooter for the SteamVR
platform. It was released July 5, 2016, and features both a room scale and
standing play area. The HTC Vive and Oculus Rift are both supported,
with the requirement that users have motion controllers [1]. The premise
of the game is that players fight off waves of monsters using the motion
controllers as guns to defend themselves. This game was actually my first
experience with a virtual reality headset, and I have to say it blew me
away. | was actually terrified the first few rounds of playing and audibly
screamed. Thinking back on the game, what really enabled this game’s
level of immersion was the detail in the environment, and the interac-
tion with the motion controllers (weapons). The game didn’t have much
for locomotion, the player is placed in a position where they have some
movement but are essentially locked in that room scale area to defend. I
also believe that the hit detection around the player was simply a capsule
shape, so not body tracked limbs. Additionally, this game was all about
intense scenarios. Anytime a game can get you to scream, it must be
pretty immersive. The developers used sound and lighting to help create
this intense scenario. Figure 1 shows this great use of lighting, also notice
the attention to detail in the environment. This game really motivates
the idea that interaction with the motion controllers and environmental
detail will be important to the immersion factor of my game.

Figure 1: Player perspective from the Brookhaven Experiment.

Space Pirate Trainer is an action wave survival game for the SteamVR
platform. This game was released as an early access game on Steam in
2016 and was officially released in October, 2017. This game takes full
advantage of the HT'C Vive room scale to create an incredible experience.



The HTC Vive and Oculus Rift are supported, with the requirement of
tracked motion controllers [2]. The goal of this game is to survive against
oncoming space robots for as many waves as possible. Players gain a score
depending on how many waves they beat, and the way they destroy the
robots. Similar to The Brookhaven Experiment, Space Pirate Trainer was
very visually immersive due to the environment. The best feature of this
game is how it makes use of room scale tracking. The hit detection for
projectiles fired at the user is not static, moving around the room, and
changing your stance allow users to avoid projectiles. This enabled the
game to not only be visually immersive, but physically immersive. After
playing this game I was actually tired. It was incredibly fun to play, and
I believe this is due to the physical immersion. This game was used as a
motivation to create a great room scale experience in my project.

3 Project Accomplishments

This section covers the planning and development of the core features of
my game.

3.1 The Environment

The environment is one of the more important aspects of this game. 1
wanted to have one of the most immersive experiences possible, so the
visuals play an important role. I decided on a winter mountain theme
for the game. In the following subsections I will break down the various
elements that create the immersive landscape and my motivations for
including them.

3.1.1 Mountain Landscape

Upon putting on the VR headset and starting the game, the user will be
immediately surrounded by a winter mountain environment. The moun-
tains and surrounding features are really just a backdrop that add to the
realism of the whole environment. In real life when you look off into the
distance there are many details that you notice, buildings, trees, people,
etc... When building the game’s environment I knew adding details out-
side of the immediate play space would be important. Figure 2 shows a
birds eye view of the whole landscape. When you look at this view it
becomes apparent how important a landscape is to the overall immersion
factor. This is why I spent a portion of my time focusing on the mountain
landscape.



Figure 2: Birds eye view of the mountain landscape.

I will briefly highlight the techniques I used in Unreal Engine to create
the landscape. The base of the mountain landscape was built using the
engine’s internal landscape modeling tool. This involved me sculpting
the various contours of the landscape. Sculpt tools used were: sculpt,
smooth, erosion, and noise. The surrounding mountain range is created
by modifying scale, rotation, and position of a single mountain mesh to
create the illusion of a range. To create the illusion of snow, a custom
material was applied to the landscape. The material is based off assets
provided by Unreal Engine.

3.1.2 Local Objects

Besides the surrounding mountain landscape, the player will also notice
objects in the immediate vicinity. These objects serve two purposes. They
add to the detail of the environment, and also add to the darker and
gloomy theme. The second purpose is the border constraint that they
add to the gameplay. VR headsets are unfortunately still corded, so I
decided that having enemies running at the user from all directions could
cause too much spinning, and in turn cause users to get tangled up. These
objects create a natural constraint to keep enemies from running at the



player from behind, thus preventing conflicts with the headset cords. The
main objects added to the environment were a tower, a statue, mountain
rock, a table, and wooden pillars. The table acts as a spawn point for
the player’s weapons. This prevents the player from having to bend down
to pick up the weapons to defend themselves. I actually thought of this
idea after getting tired of having to get the weapons off the ground when
developing their abilities. The statue has a fire emitter attached to it that
acts as a source of light for the play area. The figure below shows these
objects in the editor view.

Excluding the fire emitter, all of these local objects are static meshes. 1
don’t have much experience 3D modeling or the time to learn how to do it,
so the actual 3D models were pulled from free assets on the Unreal Engine
marketplace [3]. Once imported into the engine I had to add materials and
add custom collision constraints to the objects. The collision constraints
define how other objects in the game interact with them on collision. Most
of these objects act as a boundary, so their collision is set to block other
objects.

Figure 3: View of play area, notice the local objects and the particle snow
effects.



3.1.3 Snow Effects

My favorite and probably the most immersive part of the environment is
the snow storm effects. After building the mountain landscape, I wasn’t
totally convinced that it portrayed the theme I was trying to create. I
felt it was a little boring, and was lacking “life” or movement. I spend
about two weeks every winter in the rocky mountains, and my absolute
favorite is being completely engulfed by a snowstorm. I decided that this
effect could be beneficial for the game. Not only does it add to the realism
effect, but the limited visibility amplifies the intensity of fighting off waves
of enemies.

A variety of techniques were used to create the snowstorm illusion.
Particle emitters are the core of the visual snow effects. Unreal Engine
provides a great system for building advanced particle systems. I used
a base snow particle system provided by Unreal [3]. I created multiple
instances of this base system. These instances were blowing snow, falling
snow, gusts of wind, and smoke that emulates the reduced visibility that
occurs during a snowstorm. The use of sound is what really completes
the snow storm effect. Snow storms commonly have high winds, so I
found a variety of sound assets that mimicked the sounds of a winter
storm. These were added to the environment as location based sound
cues. This means that depending on the location of the player, they will
hear different sounds. The particle effects and sound cues can be seen in
the figure above.

3.2 Player Interactions

The interactions with the player, the weapons, and the enemy were the
most time consuming and difficult step in creating this project. Normal
interactions in Unreal Engine can be difficult, but then throwing in vir-
tual reality interactions made it all the more challenging. I knew that
these interactions would be the defining functions of my game, so I was
determined to get them working correctly. All the little details in these
interactions would in turn create the immersive experience that this game
aims to create.

3.2.1 Player-Weapon Interaction

The first challenge that I needed to address was allowing the player to pick
up weapon objects. I started with the VR template in Unreal Engine. This
gave me a spawned player and tracked motion controllers. I then created
blueprints for the motion controller objects. These blueprints contained
events for grabbing and releasing objects in the environment. I mapped
these actions to the Vive controllers grip button. When a player moves
their hand so that it is overlapping an object, they then press the grip
button. This attaches the object to the controller mesh. Pressing the grip
button again releases the object that was in that hand. The blueprints
for these interactions both behave similarly. The motion controller object
has a collision sphere around it. When the grip button is pressed the
blueprint first checks if it already has an object, if it does it detaches the



object (release event). If the controller was not already holding an object
it then checks for any overlapping objects in the collision sphere that can
be picked up. If there is one, it grabs the nearest object and attaches it
to the root controller element.

The next function of the player-weapon interaction, is actually using
the weapons. Both the lightsaber and beam rifle have trigger actions. I
was especially happy with how the lightsaber effect turned out. Upon
pulling the trigger the lightsaber “turns on”, which is a combination of
spawning the blade, and playing matching sounds for a lightsaber. Even
though the action just turns the lightsaber on and off, I really felt it
added to the overall polish and realism of the game. Pulling the trigger
of the beam rifle fires a laser projectile. The beam rifle and lightsaber are
important to the game because they are the only way the player can defend
against the waves of enemies. The blueprints to create these interactions
start to get more complicated. When the action event is fired on the
lightsaber, I first get the location transform for the parent object. I use
the location transform as the attach point for the blade object. I also
spawn and attach both a turn on sound, as well as a looping sound that
plays while the lightsaber is on. Also every tick of the game I check the
velocity of the lightsaber. If the velocity is above a threshold a swing
sound is played. Again this was a small addition, but I believe it adds to
the realism and immersion of the game. The beam rifle action behaves
similarly, except I spawn a projectile object. This object is not attached
because it is spawned with velocity. A sound is also played as the projectile
is fired. Every trigger pull a new projectile is spawned. I will cover the
interaction of the projectile and blade with the enemies in the next section.

3.2.2 Weapon-Enemy Interaction

The weapon-enemy interaction proved to be the most difficult because of
the VR component of the game. I had pretty lofty goals for these interac-
tions, which probably made this more difficult. The projectile fired from
the beam rifle collides the the skeletal mesh of the enemy. On collision a
hit particle effect is attached to that location on the enemy, and the enemy
health is lowered. Once the enemy health hits 0, the enemy is destroyed.
Figure 4 below shows the beam rifle enemy interaction. The lightsaber
interaction behaves differently. When the blade hits the enemy mesh, the
skeletal bone it collides with is detached from the body. This creates the
illusion of the lightsaber actually cutting the enemy. The lightsaber in-
teraction Kkills the enemy in one hit. Both collisions create sound effects
on hit.



Figure 4: Beam rifle shot fired, and view of collision effect on enemy.

Actually implementing these interactions took a lot of time. The three
main blueprints that I had to work on were the enemy, the blade, and the
projectile. The interaction for these events is triggered by a Hit Event. I
then break this hit event to get the actual component in the skeletal mesh
that was hit. This step caused me a lot of issues, I had to get the exact
combination of collisions for both the projectile and the enemy to get the
correct hit result to return. After receiving the bone name, I then take the
skeletal mesh of the enemy and break the constraint that holds the bone
to the body. The last big issue actually arose because of the VR motion
controllers. When the sword collides with the enemy mesh, it isn’t actually
being detected initially. I found this issue had to do with the sword being
attached to the motion controller component. However, this isn’t an issue
with the gun projectile because it is fired and is not attached to anything.
I spent a long time searching for a solution to this but I couldn’t find
anything. I ended up building my own work around to fix this issue. I
knew that the projectile being fired from the gun gave me the correct
bone hit, so if my sword fired a projectile the detection might work. This
did in fact work, however, swords don’t fire projectiles. The solution for
this was to fire a non moving, invisible projectile every frame (called a
tick in Unreal Engine). Then the next frame destroys that projectile and
creates a new one. This allows the projectiles to map with the movement



of the lightsaber blade. Solving this issue was a huge accomplishment for
my project. It allowed the lightsaber interaction to actually work, which
adds a lot to the gameplay. The other reason I wanted to highlight this
accomplishment in such detail is due to the fact that these are the issues
that arise with VR development. I spent more hours than I care to admit
trying different solutions. Searching online for answers didn’t help due to
the infancy of VR development in Unreal Engine. In the end persistence
and thinking outside of the box enabled this accomplishment. Figure 5
below shows the lightsaber-enemy interaction from in game.

Figure 5: In game action of lightsaber hitting the enemy.

3.2.3 Enemy-Player Interaction

This interaction defines how the enemy attacks the player. In this game
the enemy characters cause damage to the player when they come into
contact. The enemy makes an attack animation. Upon being hit by an
attack the player will have the edge of their vision affected to represent
the hit. If the player is hit twice by the enemy then the game ends.

To build this interaction I had to give the player blueprint a capsule
collision component, and the enemy AI an attack collision component.
When the enemy collision and the character collision overlap, an affect
health event is called, which subtracts from the player’s total health. It
also triggers the attack animation and the visual indicator that the player
is being harmed.



3.3 Enemy Al

The enemy characters have an Al component that allows them to find
and run at the player. In this game mode enemies are simply mindless
monsters, so their abilities are pretty limited. Upon being spawned each
enemy Al continuously calls a function called TrackPlayer. This function
is given the player object as the target. Once called, the AI will track the
player and run to them. The run behavior and object avoidance is handled
by Unreal Engine’s internal Al class. The majority of the work for the
enemy actually occurs in the character animation blueprint. This is where
the running, attacking, and roar animations occur. The enemy demon
mesh, and basic animations were available for free from an animator on
YouTube [4]. For the majority of the development of my project I used
the default Unreal Engine mannequin as the enemy, however, the default
mesh was just not scary. Once I found the demon mesh set online I decided
to try and incorporate it into my game. This ended up being much more
complicated than anticipated. I had to make many modifications to the
demon animation blueprint. After I successfully got the new enemy model
spawning and chasing the player, I then realized that all my weapon-enemy
interactions were broken. The issue was that the new demon mesh had
no built in collisions. The solution was to create a new physics asset for
the mesh. Other minor changes in the player, weapon, and spawner class
were required. Figure 6 shows the demon enemy mesh and a glimpse at
the blueprint that controls animation events.

In the end I was very happy with the results of incorporating this
demon mesh and animations. The changes drastically helped improve the
intensity of the game, which in turn leads to a better overall experience.

See if PawnOwner is valid (will not be in Pers ona)
Set'IsInAir’ (used in state machine)

Figure 6: View of the enemy character and part of the blueprint that drives the
animation events.

10



3.4 Round System

The last core function of the game is the round system. The round system
encompases how I spawn enemies, regulate difficulty, display text to the
user, and end the game. The majority of this work occurs in the game
mode, enemy, and enemy spawner blueprints. I will cover the main parts
of the round system in the following subsections.

3.4.1 Spawning Enemies

The enemies in the game are spawned at the beginning of each round.
The actual mechanic that spawns the enemies is a blueprint object called
EnemySpawner. These spawners are placed around the level, and each
spawner has a volume. I placed the spawners such that enemies would
run at the player from all directions, except from behind. The spawner
objects know when to spawn a new enemy based on function calls from
the gamemode blueprint. When called upon, the spawner first checks the
current number of enemies that have been spawned, if that number is less
than the max allowable enemies for that round it creates a new enemy.
The enemy is spawned at a random location within the spawner’s volume.
The figure below shows the location for the spawners and their volume
boxes.

Figure 7: Visual layout of the EnemySpawner objects on the level.

11



3.4.2 Creating and Ending a Round

The creation of new rounds occur in the gamemode blueprint. At a high
level my system works by first spawning a starting text component in
front of the player. These text components are made in the Unreal Engine
UMG editor. I then call a create round function. This function sets the
difficulty for the current round (max allowable number of enemies to be
spawned), increments the round counter, resets the enemies remaining,
and resets the current enemies spawned. It then spawns a round number
text component so that the player is notified of the starting round. The
spawn enemies function described in spawning enemies section is now
called. Now enemies are being spawned.

Ending the round occurs by checking every frame if there are 0 current
enemies remaining. If there are 0 enemies remaining then the create round
function from above is just called again. Also it’s important to note
that the enemies remaining count is decremented within the enemy Al
blueprint when that AT is killed.

Lastly, to actually end the game, the player blueprint will call the
Event Player Dead if their health is ever less than or equal to 0. When
this is called the gamemode spawns the game over text component and
sets the game mode to paused.

4 Conclusion and Future Work

The first time I tried on a virtual reality headset I knew that I wanted
to create a VR experience. CSCI 5619 gave me the opportunity and
the resources to attempt VR development. This project was an amazing
learning experience. I spent around 70 hours creating this game, and
learned a lot about VR development and Unreal Engine. The more I
worked on the project, the more ideas I came up with and wanted to
implement. Time limited me in the end. In this section I will wrap up
this project by talking about some of the future work I would complete
given more time and give my final insights on the outcome of the project.

There were a variety of additional tasks and ideas that I wanted to
include in this game. I worked hard to complete all the core features,
so I would describe most of these items as “polish” to the game. The
location and animation of where the hand grabs the rifle and lightsaber
aren’t perfect. The orientation and model of the hand needs to be slightly
modified. This change would just add to the realism of actually picking
up and holding the weapons. I also would have liked to add some more
body tracking functionality. This was an idea that I brought up in my
initial project proposal, but in the end it would have been almost an entire
side project to just to incorporate it with my game. The last big group-
ing of additional work I would like to implement can be summed up as
modifications to the gameplay. Building enemies that fired projectiles at
the player would add a whole new dynamic to the gameplay. I could then
include additional interaction with a shield, or the lightsaber reflecting
enemy projectiles. The last main function I would like to tweak would
be the round waves difficulty. Variable run speed, dodging, and attack

12



abilities could all be added to the enemy Al so that they are more vari-
able, this would create more challenging late game rounds. Additionally,
adding ammo and cooldowns to the player weapons would also make the
game more challenging and strategic.

Overall, I am very pleased with the outcome of the project. 1 was
able to complete all the core functions that enabled enjoyable gameplay
for the user. I discuss the accomplishments in more detail in the sections
above, however, I want to highlight the player-weapon and weapon-enemy
interactions in this section again. These interactions are what stand out
as my most important accomplishment. While the environment details
and the round system are important to this game, the actual interactions
with the motion controller and the enemy are what showcase the power of
VR. Picking up and using the weapons really helps create the immersive
experience that I wanted to achieve, the player is no longer sitting in a
chair and hitting buttons on a keyboard. They are now standing, picking
up weapons, swinging a lightsaber, aiming, and firing a beam rifle. These
type of interactions are what give VR games an edge over traditional
monitor based video games. I plan to continue working on this game even
after the class is done, it provides a great avenue into improving my VR
development abilities, and it is very exciting time to be building virtual
reality experiences.

References

[1] The Brookhaven Experiment. 2016.
http://store.steampowered.com/app/440630/ The_Brookhaven_Experiment/.

[2] Space Pirate Trainer . 2016. http://store.steampowered.com/app/418650/Space_Pirate_Trainer/.

[3] Unreal Engine Marketplace. 2016.
https://www.unrealengine.com/marketplace.

[4] Free Horror Game  Monster + Animations (Un-
real Engine 4, Unity..Any Game FEngine). 2016.
https://www.youtube.com/watch?v=n3IH4qGf_ZA.

13



